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Iterative projection algorithms (IPAs) are a promising tool for protein

crystallographic phase determination. Although related to traditional density-

modification algorithms, IPAs have better convergence properties, and, as a

result, can effectively overcome the phase problem given modest levels of

structural redundancy. This is illustrated by applying IPAs to determine the

electron densities of two protein crystals with fourfold non-crystallographic

symmetry, starting with only the experimental diffraction amplitudes, a low-

resolution molecular envelope and the position of the non-crystallographic axes.

The algorithm returns electron densities that are sufficiently accurate for model

building, allowing automated recovery of the known structures. This study

indicates that IPAs should find routine application in protein crystallography,

being capable of reconstructing electron densities starting with very little initial

phase information.

1. Introduction

Electron-density modification is commonly used in protein

crystallography to refine initial phase estimates by applying

real-space constraints. Density-modification procedures

(Cowtan, 2010; Terwilliger, 2003; Abrahams & Leslie, 1996)

are integrated into the automated structure solution packages

now in widespread use. Success, however, depends on the

accuracy of initial phases, which are generally obtained

experimentally using the methods of isomorphous replace-

ment or anomalous dispersion, or computationally, using the

method of molecular replacement. When initial phase esti-

mates are poor, density modification may fail to determine

high-resolution phases that are sufficiently accurate for model

building. There is, therefore, interest in the continued devel-

opment of methods for structure determination in the absence

of reliable phase estimates.

We have shown previously that with fairly minimal struc-

tural redundancy, the electron density is uniquely determined

by the structure-factor amplitudes alone (Millane & Lo, 2013).

Furthermore, we also showed that it should be possible to

determine protein electron densities from the diffraction

amplitudes by using iterative projection algorithms that have

better global convergence properties than conventional elec-

tron-density modification algorithms (Millane & Lo, 2013). In

this paper, we demonstrate the effectiveness of these algo-

rithms by using them to determine two tetrameric protein

crystal structures starting with only the crystallographic

diffraction amplitudes, a low-resolution envelope and the

position of the non-crystallographic symmetry axes.

This paper is organized as follows. In x2 we briefly review

the information needed for phasing in protein crystallography
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and the nature of iterative projection algorithms. Some

specific details of the implementation of the iterative projec-

tion algorithm for protein crystallography are described in x3.

Results of the application to the two proteins are described in

x4. Concluding remarks are made in x5.

2. Background

Although the macromolecular crystallographic phase problem

is generally underdetermined in the absence of additional

experimental data, it is well known that additional real-space

information, or structural redundancy, constrains the problem

(Crowther, 1969; Bricogne, 1974; Millane, 1990; Liu et al., 2012;

Millane & Lo, 2013). If a low-resolution molecular envelope

and the position of any non-crystallographic symmetry (NCS)

operators are known, then a unique solution to the phase

problem can be expected in the absence of any additional

information if the order of the NCS, R, satisfies R> 2f , where f

is the proportion of the unit cell occupied by protein (Millane

& Lo, 2013). However in practice, in the presence of noise and

missing data, and based on the results of Liu et al. (2012), a

more realistic requirement is that the order of the NCS

satisfies (Millane & Lo, 2013)

R > 3f : ð1Þ

Therefore, fairly minimal structural redundancy should be

sufficient in practice to uniquely determine the electron

density. With insufficient constraints the solution is non-

unique and no phase retrieval algorithm will locate the correct

solution. However, although with sufficient constraints the

solution is unique, a phase retrieval algorithm may still fail to

find the solution because the associated optimization problem

is highly non-convex and location of the solution is nontrivial.

In Millane & Lo (2013) we have proposed iterative projection

algorithms as an effective method for finding the solution in

the absence of initial phase information.

Iterative projection algorithms for phase determination in

protein crystallography are described by Millane & Lo (2013),

and here we briefly review the background of these algorithms

for the purposes of the current paper. The reader is referred to

Millane & Lo (2013) for more details. These algorithms utilize

the same kinds of real-space constraints, such as solvent flat-

ness, non-crystallographic symmetry, histograms, etc., as are

used in conventional electron-density modification algorithms.

Constraint information is generally incorporated by adjusting

the electron density in a minimal way such that the corre-

sponding real-space constraint is satisfied. Such a step can be

identified as a ‘projection’ onto the constraint (Bricogne, 1974;

Millane, 1990; Marks et al., 1999; Elser, 2003a; Millane & Lo,

2013). Incorporation of the diffraction data can be viewed in a

similar way as a projection of the electron density onto a

diffraction-amplitude constraint, i.e. the electron density is

adjusted so that its Fourier amplitudes are equal to the

measured structure-factor amplitudes.

The important difference between general iterative

projection algorithms and conventional density-modification

algorithms is the way in which the projections are incorpo-

rated (Millane & Lo, 2013). In conventional density modifi-

cation, the estimated electron density is obtained by simply

alternately projecting it onto the real-space and reciprocal-

space constraints (Bricogne, 1974; Millane & Lo, 2013). In the

image processing literature, this algorithm is often referred to

as the ‘error-reduction algorithm’ (Fienup, 1982). The diffi-

culty with this algorithm, however, is that it is prone to

‘stagnation’ if it is not started with phases that are reasonably

close to their correct values. When the algorithm stagnates, or

reaches a so-called fixed point, the electron density estimate

returns to the same (incorrect) value at subsequent iterations,

and so no progress is made towards the correct solution. The

error-reduction algorithm, therefore, has poor global conver-

gence properties, and this feature is known to be due to the

non-convexity of the diffraction-amplitude constraint

(Millane, 1990; Millane & Lo, 2013).

There is, however, a class of more general iterative

projection algorithms that are more resistant to stagnation and

have better global convergence properties (Elser, 2003a;

Marchesini, 2007; Thumiger & Zanotti, 2009; Millane & Lo,

2013). The difference between these algorithms and conven-

tional density modification is the way in which the projections

are used at each iteration of the algorithm. For the purposes of

describing these algorithms, the electron density is repre-

sented by an N-dimensional vector x whose components are

the samples of the electron density at the N grid points in the

unit cell or in the asymmetric unit. An iterative projection

algorithm proceeds by updating an electron density ‘iterate’,

denoted by the vector xn, at each iteration n, according to

some update rule.

Conventional density modification, or the error-reduction

algorithm, involves a simple alternation of projections of the

electron density onto the real-space and reciprocal-space

constraints, and so the update rule is

xnþ1 ¼ PAPBxn; ð2Þ

where PA and PB denote the projections onto the real-space

and reciprocal-space constraints, respectively. The more

sophisticated iterative projection algorithms that have better

global convergence properties use more complicated update

rules than (2). We note that solvent flipping (Abrahams, 1997),

and also charge flipping (Oszlanyi & Suto, 2008; Palatinus,

2013), are particular cases of more general iterative projection

algorithms (Millane & Lo, 2013). Solvent flipping can speed

the convergence of conventional density modification but it

does not have a sufficiently large radius of convergence to

successfully recover the phases if the initial phase estimates

are poor. Charge flipping is more suitable for small-molecule

phasing where atomic resolution data are available.

A number of iterative projection algorithms that have good

global convergence properties have been described [see, for

example, Marchesini (2007) and Millane & Lo (2013)]. These

different algorithms tend to have similar convergence prop-

erties. One of the first such algorithms was the ‘hybrid input–

output’ algorithm developed for applications in optics

(Fienup, 1982). This algorithm has had some application in

protein crystallography (Millane & Stroud, 1997; van der Plas
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& Millane, 2000; Liu et al., 2012). Here, we choose the

‘difference map’ algorithm of Elser (2003a) for our experi-

ments. Note that the ‘difference map’ algorithm is unrelated to

the difference Fourier synthesis routinely employed in protein

crystallography (Henderson & Moffat, 1971). The update rule

for the difference-map algorithm is

xnþ1 ¼ xn þ �½PAFBð1=�Þxn � PBFAð�1=�Þxn�; ð3Þ

where FAð�1=�Þ and FBð1=�Þ are referred to as relaxed

projections onto the real-space and reciprocal-space

constraints, respectively, and are defined in terms of the

projections PA and PB by

FAð�1=�Þx ¼ PAxþ ð�1=�ÞðPAx� xÞ; ð4Þ

and similarly for PBð1=�Þ. The difference-map algorithm has

the single parameter � and values � � 0:7 are usually suitable.

The difference-map algorithm has been applied to ab initio

phasing in small-molecule crystallography (Elser, 2003b).

A characteristic of these kinds of algorithms is that they

tend to be unstable near a fixed point that does not correspond

to a solution. This feature is related to their resistance to

stagnation and their ability to explore the parameter space.

Since, as a result of various errors and noise, the solution with

experimental data will never be exact, after initially

approaching the solution, the iterate will sometimes drift away

from the solution. Measures may need to be taken to arrest

this divergent behaviour.

It is important to note that the iterate xn in an iterative

projection algorithm is not itself generally an estimate of the

electron density, but is an auxiliary function that is used by the

algorithm to search the parameter space. Therefore, when the

algorithm has converged, i.e. xnþ1 � xn, xn does not generally

represent an estimate of the solution. However, on conver-

gence, an estimate of the solution can be obtained from the

iterate. In the case of the difference-map algorithm, the

solution, denoted x̂x, is given by

x̂x ¼ PAFBð1=�Þx
�
n; ð5Þ

where x�n denotes the iterate at convergence (Elser, 2003a;

Millane & Lo, 2013).

In the context of protein crystallography, assuming that at

least a molecular envelope is available, the difference-map

algorithm can be applied by starting with a random electron

density within the envelope, and applying the update rule (3)

at each iteration using the projection operators PA and PB.

Equivalently, one could initiate the algorithm in reciprocal

space, rather than real space, by starting with random phases.

The projection operators correspond to the usual density-

modification steps used in conventional electron-density

modification algorithms as described above (Millane & Lo,

2013). In the experiments described here, we use solvent

flatness and NCS constraints in real space. The details are

described in x3.3.

There has been some exploratory application of iterative

projection algorithms in protein crystallography. Millane &

Stroud (1997) and van der Plas & Millane (2000) adapted the

hybrid input–output algorithm to incorporate an NCS

constraint and applied it to reconstruction of an icosahedral

virus with fivefold NCS, starting with a spherical shell and

using simulated data. Good maps were obtained at 8 Å reso-

lution. Lo et al. (2009) applied the difference-map algorithm to

the determination of molecular envelopes in protein crystals

from simulated solvent contrast variation data by incorpor-

ating binary constraints as well as connectivity/compactness

constraints. Lo & Millane (2010) applied the difference-map

algorithm to the reconstruction of an icosahedral virus starting

from a spherical shell using experimental data and a fivefold

NCS constraint, which gave a good reconstruction at about

3 Å resolution. Liu et al. (2012) applied the hybrid input–

output algorithm with a solvent flatness constraint to a number

of solved proteins with high (>65%) solvent content and data

to between 2.0 and 2.8 Å resolution, starting with molecular

envelopes calculated from the atomic coordinates. The algo-

rithm was supplemented with conventional histogram

matching and resulted in interpretable maps.

Inspection of (1) shows that in the absence of non-crystal-

lographic symmetry (i.e. R = 1), a unique solution is expected

only if the solvent content exceeds about 67%. However, this

accounts for only about 7% of previously characterized

protein crystals (Weichenberger & Rupp, 2014). Therefore, for

most proteins, additional real-space constraint information

will be needed in order to obtain a unique solution to the

phase problem. In this paper we exploit NCS as the additional

constraint. We apply the difference-map algorithm to phasing

diffraction data from several protein crystals with lower

solvent contents (�50%) starting with only a low-resolution

envelope and employing solvent flatness and NCS constraints.

The results show the potential of iterative projection algo-

rithms for phasing protein structures with no initial phase

information.

3. Methods

The basic reconstruction algorithm used here is the difference-

map algorithm as described in x2, and a number of details of

the implementation for protein crystallography are described

in this section.

3.1. Data weighting and phase extension

In conventional electron-density modification, medium-

resolution experimental phases are frequently extended to

high resolution by incorporating the higher resolution ampli-

tudes, stepwise in resolution shells and re-refining all the

phases at each step (Lawrence, 1991; Rossmann, 1995). The

effect of this stepwise incorporation of the higher resolution

data is to improve the likelihood of correct phase determi-

nation at higher resolution compared with attempting to phase

all the data in a single step. Our experiments with the appli-

cation of iterative projection algorithms have shown that a

similar form of phase extension in which the higher resolution

amplitude data are gradually incorporated in a stepwise

fashion improves the likelihood and speed of convergence.

research papers

Acta Cryst. (2015). A71, 451–459 Victor L. Lo et al. � Iterative projection algorithms – application 453



It is well known that windowing (or apodizing or tapering)

spectral data with a filter that has a smooth fall-off in Fourier

space is preferable to an abrupt truncation, because it

suppresses ringing in the other (real space) domain, and this

technique is widely applied in signal processing, optics and

imaging (Waser & Shomaker, 1953; Harris, 1978; Bracewell,

1986). We take this approach here, and rather than using a

sharp resolution cutoff at each phase extension step, the

diffraction-amplitude data are tapered with a Gaussian func-

tion. The resolution is extended in steps, and at the mth step

the diffraction amplitudes are multiplied by a weight function,

wmðsÞ, given by

wmðsÞ ¼ expð�s2=2�2
mÞ; ð6Þ

where 1=s is the resolution in ångströms associated with each

amplitude and the standard deviation �m determines the

degree to which the high-resolution data are incorporated. In

the experiments performed here, 11 resolution steps were used

with weighting functions that have half-heights (i.e. where

s ¼ 1:2�) at 30, 20, 10, 8, 6, 5, 4, 3, 2, 1 Å resolution, and at the

final resolution step all the diffraction data are used with

uniform weighting, as shown in Fig. 1. The reconstruction

algorithm is run for a number of iterations at the lowest

resolution step and then the value of �m is increased to the

value for the next step and another set of iterations is run. The

resolution is increased stepwise in this manner until the final

step where no weighting is applied. As a result of the Gaussian

weighting, the resolution is not readily defined at each step

and so we sometimes denote the progression to higher reso-

lution with the labels 1 through to 11 which refer to the

corresponding weight functions shown in Fig. 1.

3.2. Envelope position and orientation

We assume here that we are studying a symmetric protein

oligomer; that a low-resolution estimate of the molecular

envelope is available; and that this envelope can be correctly

positioned and oriented within the unit cell. This appears to be

an accessible starting point using existing methodology. If

even a poor heavy atom derivative can be prepared, SAD/

MAD or SIRAS phasing would generate the necessary

information (McCoy & Read, 2010; Hendrickson, 2014).

Alternatively, if a low-resolution envelope for the oligomer

was generated experimentally using small-angle X-ray solu-

tion scattering (SAXS) or transmission electron microscopy

(TEM), it might be positioned within the unit cell. There is a

precedent for using low-resolution TEM-derived image

reconstructions and SAXS-derived envelopes as search

models in molecular replacement (Urzhumtsev & Podjarny,

1995; Dodson, 2001; Hao, 2006; Navaza, 2008; Xiong, 2008;

Hong & Hao, 2009; Trapani et al., 2010; Stuart & Abrescia,

2013). In many cases the orientation of the oligomer within the

crystal can be deduced from inspection of the self-rotation

function (Tong & Rossmann, 1997; Sawaya, 2007), providing

an independent check on the validity of any solution (Dodson,

2001; Xiong, 2008).

For the purposes of our simulations, we generated mole-

cular envelopes by Gaussian kernel smoothing the electron

density calculated from the atomic coordinates (Gaussian

half-height 10 Å, and applying a thresholding step to generate

a binary envelope encompassing the correct fraction protein

[see Wang (1985)]. For the simulations, we utilized crystal-

lographic data for two tetramers with 222 point-group

symmetry that crystallize in space group P212121 with a

tetramer in the asymmetric unit, giving rise to fourfold NCS,

and the rotational NCS operations associated with each

tetramer were determined from the atomic coordinates.

3.3. Projections

In the experiments described here, we use solvent flatness

and NCS constraints to determine the projection operator

(PA) in real space, and the measured diffraction amplitudes to

determine the projection operator (PB) in reciprocal space, as

described in x2. In this study, for computational convenience

the calculations were carried out in space group P1, although

the true space group of the crystals under study is P212121. It

would be straightforward to adapt the procedure to efficiently

account for the presence of crystallographic symmetry and

non-orthogonal cell axes, and to construct the real- and reci-

procal-space projection operators over the asymmetric region

in each space.

Consider first the real-space projection PA. Generally, as a

result of space-group symmetry, there will be a number,

denoted n, of molecular envelopes in the unit cell. These

envelopes are denoted U1;U2; . . . ;Un. In general, some of the

molecular envelopes may slightly overlap. The total protein

region U is the union of the molecular envelopes, i.e.

U ¼ U1 [ U2 [ � � � [ Un, and the solvent region, denoted S, is

S ¼ V � U, where V denotes the region of the unit cell. Let
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The weighting function wmðsÞ versus resolution ð1=sÞ for each resolution
step. The vertical lines show the resolution at the half-height of each
weighting function.



there be Ns grid points in the solvent region S. We define an

‘overlap region’, denoted O, which is equal to the union of all

the intersections of the molecular envelopes, i.e.

O ¼ [8ði;jÞðUi \ UjÞ. Each grid point within U is associated

with a molecular envelope. Consider the molecular symmetry

axes which exhibit NCS, i.e. those that do not coincide with

space-group symmetry axes. Let the resulting NCS be of order

R. Then, within each envelope, each grid point j will have

R� 1 equivalent positions, as dictated by the NCS, that will

generally not be grid points, which are denoted jðmÞ, where

m ¼ 1; 2; . . . R indexes the NCS operations, and m = 1

corresponds to the identity operation. The electron density

calculated at position jðmÞ is denoted x0jm. For m 6¼ 1, the x0jm
are calculated by tri-linear interpolation from the electron

density at the (maximum of eight) nearest grid points that are

in the same envelope as grid point j but not in an overlap

region. The number of positions jðmÞ, for fixed j, that are not in

the overlap region O, is denoted Mj. With these definitions,

and incorporating the solvent flatness constraint, the real-

space projection PA is given by

PAxj ¼
1
Mj

P
fm: jðmÞ =2Og

x0jm for j 2 U �O

¼ 1
Ns

P
m2 S

xm for j 2 S:
ð7Þ

Consider now the reciprocal-space projection PB. For reci-

procal lattice points where data are measured, this projection

involves simply setting the structure-factor amplitudes of the

iterate to their measured values and leaving their phases

unchanged. At reciprocal lattice points where data are not

measured, both the amplitude and the phase of the iterate are

left unchanged. Because the iterate is defined in real space, the

projection operator also involves a Fourier transform and an

inverse Fourier transform operation, and can be written as

PBx ¼ F�1
½P ~BBF½x��; ð8Þ

where F½�� denotes the Fourier transform and the projection

P ~BB is defined by

P ~BBXh ¼

�
Mh expði’hÞ if h 2 Q;
jXhj expði’hÞ if h =2Q;

ð9Þ

where Xh denotes the structure factor at reciprocal lattice

vector h, i.e. F½x� ¼ ðXh1
;Xh2

; . . .Þ, Mh are the measured

diffraction-amplitude data after multiplication by the

weighting function for the current resolution step and on the

same scale as jXhj, ’h denotes the phase of Xh, and Q denotes

the set of reciprocal lattice points h where the data are

measured (i.e. between the minimum and maximum resolu-

tions and excluding any missing data).

3.4. Error metrics

As the iterate xn is not an estimate of the electron density as

described in x2, it is not appropriate to calculate error metrics

based on this quantity. There are various ways of monitoring

convergence of these algorithms, and here we use the estimate

of the electron density x̂x calculated using (5) at iteration n, and

compute conventional crystallographic error metrics as

follows. Only the first of these metrics would be applicable to

de novo phasing applications. However the latter two metrics,

which are phase dependent, are useful for benchmarking the

performance of the algorithms. Error metrics for iterative

projection algorithms are also discussed by Millane & Lo

(2013).

The R factor at iteration n is calculated as

Rn ¼

P
h2Q jjX̂Xhj �MhjP

h2Q Mh

; ð10Þ

where X̂Xh is the structure factor of the estimated density x̂x at

iteration n. The mean phase error is calculated as

�n ¼

P
h whj’̂’h � ’

c
hjP

h wh

; ð11Þ

where ’̂’h is the phase of X̂Xh, ’c
h is the true phase (calculated

from the electron density derived from the atomic coordi-

nates), and wh is the resolution-dependent weighting function

(Fig. 1). The similarity between the reconstructed map and the

true electron density is measured by the correlation coefficient

which is calculated in reciprocal space as (Lunin & Woolfson,

1993)

Cn ¼

P
h2Q jX̂XhjMh cosð’̂’h � ’

c
hÞP

h2Q jX̂Xhj
2 P

h2Q M2
h

� �1=2
: ð12Þ

4. Results

Here we present the results of applying the methods described

above to two proteins with�50% solvent content and fourfold

NCS. Both proteins are tetramers with 222 point-group

symmetry: tryptophanase from Proteus vulgaris (PDB entry

1ax4) and lactate dehydrogenase from Thermus thermophilus

(PDB entry 2v7p). Inspection of (1) shows that fourfold NCS

should be more than sufficient to resolve the phase problem in

these cases, and we demonstrate here that the solution can be

obtained using iterative projection algorithms.

4.1. P. vulgaris tryptophanase

The first molecule used to evaluate algorithm performance

is the tryptophanase from Proteus vulgaris (Isupov et al., 1998),

PDB entry 1ax4. The crystal space group is P212121 with unit-

cell dimensions 115.0 	 118.2 	 153.7 Å. A tetramer with 222

symmetry occupies each asymmetric unit giving fourfold NCS.

The solvent content is 50%. Diffraction data are available

between 18 and 2.1 Å resolution, with an overall completeness

of 97% to 2.1 Å resolution. The data were expanded into

space group P1 using the crystallographic symmetry. The

position and orientation of the NCS axes were derived from

the molecular model and are assumed known.

The electron density was sampled on a 110 	 114 	 146

grid, and this grid was used for all resolution steps. The

molecular envelope was calculated as described in x3.2, and

positioned in the unit cell and replicated by the space-group
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symmetry. The algorithm was started with electron-density

samples within the envelopes chosen independently from a

uniform distribution on the interval ð0; 1Þ. The actual distri-

bution used was not critical as application of the measured

amplitudes in the first iteration sets an approximate scale

factor. The difference-map algorithm with � ¼ 0:7 was applied

as described in xx2 and 3. Three different random starting

densities were used, but very similar results were obtained for

each.

The algorithm was initially run for 200 iterations at each

resolution step. Convergence to a good solution was achieved,

but inspection of the results indicated that improvements

could be made to the algorithm to reduce the number of

iterations required. Inspection of the error metrics versus

iteration showed that for each of the first three resolution

steps, the algorithm converged in less than the 200 iterations.

For the remaining higher resolution steps, the algorithm

converged quickly, in less than 20 iterations, and then started

to diverge. The divergent behaviour is a result of the inherent

instability of the difference-map algorithm, which is a conse-

quence of its good global search properties as described in x2.

In view of this behaviour, two modifications were made to the

algorithm which allowed the overall number of iterations to be

reduced.

First, as a result of the divergent behaviour, the iterate at

the end of a resolution step is not necessarily the best value

with which to start the next resolution step. Therefore, at the

end of each resolution step, the electron density iterate during

that step that has the minimum R factor is used as the starting

point for the next resolution step. This gives a better density at

the start of each resolution step.

Second, for the higher resolution steps, the algorithm

converges quickly and then starts to diverge, so that a large

number of iterations is unnecessary. The number of iterations

used for each resolution step is therefore determined dyna-

mically by detecting divergence of the algorithm and termi-

nating the iterations for this step at that point. As more

iterations are required at the low resolutions where the R

factor is larger, the following strategy was used. If the R factor

remains greater than 0.4, the full 200 iterations are conducted

at that resolution step. If the R factor falls below 0.4, then the

iterations at that resolution step are stopped when the beha-

viour of the R factor indicates that the algorithm is diverging.

The assessment of divergence is based on a smoothed version

of the R factor as follows. A running average of the R factor is

maintained over two preceding contiguous windows of length

P iterations each, that are denoted R1ðnÞ and R2ðnÞ, i.e.

R1ðnÞ ¼
1

P

Xn

k¼n�Pþ1

Rk;

R2ðnÞ ¼
1

P

Xn�P

k¼n�2Pþ1

Rk;

ð13Þ

where n is the current iteration number. For each resolution

step, the first iteration n for which Rn < 0:4 and R1ðnÞ>R2ðnÞ

is taken to be the start of divergent behaviour and the itera-

tions are terminated at that point. The electron density iterate

in that step with the minimum R factor is then used to initiate

the next resolution step. The value P = 10 was found to be

effective.

Incorporating these modifications, the algorithm was

applied again to the P. vulgaris tryptophanase data. Good

convergence was again obtained with the total number of

iterations being reduced from 2200 to 800. Again, three
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R factor, mean phase error and correlation coefficient (a, b, c) versus
iteration for P. vulgaris tryptophanase. The small circles show the
iterations with minimum R factor that are used to initiate the subsequent
resolution step.



different starting electron densities were used and very similar

results were obtained for each. Plots of the R factor, mean

phase error and correlation coefficient are shown in Fig. 2. The

iterations with minimum R factor that are used to initiate the

next resolution step are indicated by the small circles in the

figure.

Fig. 2 shows that the error metrics are large for about the

first 600 iterations while the algorithm is searching the para-

meter space for the region of the solution. The R factor is

initially large while the correct scale factor is determined,

which is initially indeterminate because of the absence of the

low-resolution diffraction data. Once the region of the solu-

tion is found, the algorithm descends relatively quickly to the

solution, at the same time determining the high-resolution

phases. Divergent behaviour in the high-resolution steps is

evident. The important part of the algorithm is the global

search phase during the first �600 iterations in which the

region of the solution is found, despite starting with phases

that are far from the correct values. It is this global search

ability that sets these kinds of algorithms apart from

conventional density-modification algorithms which with poor

initial phases would typically stagnate at an early stage and

make no progress to the solution.

The final R factor, mean phase error and correlation coef-

ficient are 0.242, 68
 and 0.672, respectively, indicating a good

solution. Inspection of the reconstructed electron density

within the envelope showed that it is clearly interpretable over

the majority of the polypeptide chain, and hence suitable for

de novo model building. The map was used as input to the

automated model building procedure ARP/wARP version 7.4

(Langer et al., 2008), which resulted in the successful place-

ment of 83% of the sequence, supporting the above conclu-

sion. An example of the density associated with the C-terminal

region of the polypeptide chain is shown in Fig. 3(a). The local

agreement between the map and model was also analyzed

using the program SFCHECK (Vaguine et al., 1999). The

agreement between the electron density and the model is good

almost everywhere, with the regions where agreement is poor

largely confined to highly mobile loops on the protein surface.

In these regions the atomic displacement parameters of the

published model are high, and the electron density is expected

to be weak. Overall then, a very satisfactory solution is

obtained.

4.2. T. thermophilus lactate dehydrogenase

The second molecule studied is another tetrameric protein

with 222 point-group symmetry, the lactate dehydrogenase

(LDH) from Thermus thermophilus (Coquelle et al., 2007),

PDB entry 2v7p. This also crystallizes in space group P212121

with a tetramer in the asymmetric unit. The unit-cell dimen-

sions are 151.5 	 142.9 	 59.6 Å and the solvent content is

50%. Diffraction data are available between 46 and 2.1 Å

resolution, with an overall completeness of 98% to 2.1 Å

resolution. As in the previous case, the position and orienta-

tion of the NCS axes were determined from the molecular

model, and are assumed known.

The electron density was sampled on a 146 	 136 	 58 grid

and this grid was used at all resolution steps. The molecular

envelope was calculated as described in x3.2, and positioned in

the unit cell and replicated by the space-group symmetry. The

difference-map algorithm was applied starting with a random

electron density in the envelopes using the same scheme as for

P. vulgaris tryptophanase. Three different random starting

densities were used and very similar results were obtained for

each. The error metrics are shown versus iteration in Fig. 4.

Similar behaviour is seen as for the case of P. vulgaris tryp-
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Figure 3
(a) Reconstructed electron density associated with amino acids 413–435
of P. vulgaris tryptophanase (PDB entry 1ax4), corresponding to the
penultimate �-helix of the structure and its preceding �-strand. The
deposited atomic model is shown in stick representation, together with an
iso-surface of the reconstructed electron-density map. (b) Iso-surface of
the reconstructed electron density associated with amino acids 22–44 of
T. thermophilus LDH (PDB entry 2v7p), corresponding to the first �-
helix of the structure and its preceding �-strand, together with the
deposited atomic model. Figures were prepared using UCSF Chimera
(Pettersen et al., 2004), with zoning applied to visualize the relevant sub-
region of the map.



tophanase. The algorithm is in the global search phase for the

first�800 iterations. The mean phase error and the correlation

coefficient behave erratically during the first 400 iterations.

This behaviour is associated with the global search and

subsides after progress is made towards finding the region of

the solution. Convergence is obtained at high resolution in 970

iterations and the final values of the error metrics are R =

0.270, � = 67
 and C = 0.690.

As for P. vulgaris tryptophanase, the reconstructed elec-

tron-density map was clearly interpretable over the majority

of the polypeptide chain. Application of automated model

building procedures with ARP/wARP resulted in the

successful placement of 92% of the sequence. Electron density

associated with the N-terminal region of the polypeptide chain

is shown in Fig. 3(b). One point of interest in the recon-

struction is a poorly defined electron density associated with

helix �E (amino acids 112–131). For T. thermophilus LDH,

this is one of several regions of the structure (amino acids 100–

131 and 206–223) which can undergo conformational

switching, principally associated with substrate and cofactor

binding (Coquelle et al., 2007). Within these regions there are

systematic conformational differences between the individual

subunits of the LDH tetramer, resulting in departures from

the assumed 222 NCS. The breakdown of the NCS degrades

the reconstruction despite �E being well ordered in the indi-

vidual subunits of the tetramer.

5. Discussion

Iterative projection algorithms represent a more sophisticated

version of conventional density-modification algorithms that

have better global convergence properties. With sufficient,

although fairly modest, real-space constraints, they are able to

converge to a correct electron density with little or no initial

phase information. Application of one of these kinds of

algorithm, the difference-map algorithm, to experimental

diffraction data from two protein crystals with modest solvent

content and fourfold NCS, starting with only a low-resolution

molecular envelope and the positions of the NCS axes, leads to

high-resolution electron-density maps that are sufficiently

accurate for chain tracing. The results confirm the good global

convergence properties of these algorithms and their potential

for phasing in protein crystallography with minimal additional

experimental information. At a minimum, the approach

appears competitive with conventional density-modification

algorithms. In the presence of low-order NCS, successful high-

resolution phasing using these algorithms generally requires

initial phase estimates to moderate (5–8 Å) resolution [see,

e.g., Nemecek et al. (2013)]. We note also that algorithms of

the kind we propose can accommodate any real-space

constraint, so that inclusion of other features of expected

macromolecular electron-density maps would further enhance

their effectiveness.

In the results presented, a low-resolution molecular

envelope and the position of the NCS axes are needed in order

to apply the solvent flatness and NCS constraints at the outset

of the procedure. At present, the most straightforward way to

generate this information would be to employ conventional

experimental phasing techniques such as SAD/MAD and

SIRAS. So long as the quality of the phases is sufficient to

identify the solvent boundary and locate the NCS axes,

iterative projection algorithms can be applied. However, there

is potential to incorporate determination of this ancillary

information (molecular envelope and position of the NCS

axes) directly from the diffraction data into these kinds of
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Figure 4
R factor, mean phase error and correlation coefficient versus iteration for
T. thermophilus LDH. The small circles show the iterations with
minimum R factor that are used to initiate the subsequent resolution step.



algorithms, in which case they would become a viable method

for ab initio phasing in protein crystallography.

While the current paper was in review, a new paper

reporting related work has appeared (He & Su, 2015). These

authors further develop the approach of Liu et al. (2012),

applying the hybrid input–output algorithm to crystals with

high solvent content. Their principal new innovation is a

scheme for concurrently determining the molecular envelope.

This is a significant step, and provides further evidence of the

potential of iterative projection algorithms for phasing in

protein crystallography.
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